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Abstract. The effects of the open boundaries on the dynamical behavior of the optimal velocity traffic
flow models with a delay time τ allowing the car to reach its optimal velocity is studied using numerical
simulations. The particles could enter the chain with a given injecting rate probability α, and could leave
the system with a given extracting rate probability β. In the absence of the variation of the delay time ∆τ ,
it is found that the transition from unstable to metastable and from metastable to stable state occur
under the effect of the probabilities rates α and β. However, for a fixed value of α, there exist a critical
value of the extraction rate βc1 above which the wave density disappears and the metastable state appears
and a critical value βc2 above which the metastable state disappears while the stable state appears. βc1

and βc2 depend on the values of α and the variation of the delay time ∆τ . Indeed βc1 and βc2 increase
when increasing α and/or decreasing ∆τ . The flow of vehicles is calculated as a function of α, β and ∆τ
for a fixed value of τ . Phase diagrams in the (α, β) plane exhibits four different phases namely, unstable,
metastable, stable. The transition line between stable phase and the unstable one is curved and it is of first
order type. While the transition between stable (unstable) phase and the metastable phase are of second
order type. The region of the metastable phase shrinks with increasing the variation of the delay time ∆τ
and disappears completely above a critical value ∆τc.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 64.60.Cn Order-disorder
transformations; statistical mechanics of model systems – 75.30.Kz Magnetic phase boundaries (including
magnetic transitions, metamagnetism, etc.) – 82.20.Wt Computational modeling; simulation

1 Introduction

Recently, traffic problems have attracted considerable at-
tention [1–3], due to the fact that traffic behavior is impor-
tant in our lives. When car density increases, traffic jams
appear. A variety of approaches have been applied to de-
scribe the collective properties of traffic flow: car-following
models [4–9], cellular automaton models [10–14], gas ki-
netic models [15–17], and hydrodynamic models [18,19].

The traffic flow models are classified into the determin-
istic and stochastic models. Nagel and Schreckenberg [10]
have introduced a stochastic cellular automaton model. It
has been shown that the start-stop waves (traffic jams)
appear in the congested traffic region as observed in real
freeway traffic. Bando et al. [6] have proposed the deter-
ministic optimal velocity model in which a car accelerates
or decelerates according to the dynamic equation of car
motion with the optimal velocity function. Traffic flow is
a kind of many-body systems of strongly interaction cars.
Recent studies reveal physical phenomena such as the non-
equilibrium phase transitions and nonlinear waves [7–19]
the jamming transitions between the freely moving traffic
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and jammed traffic are very similar to the conventional
phase transitions and critical phenomena: the freely mov-
ing and jammed traffic correspond to the gas and liquid
phases, respectively. The traffic behavior has been studied
by microscopic and macroscopic models [4,5].

In many works, the jamming transitions and the den-
sity waves have been investigated for the system of vehi-
cles with the same characteristic. The car following mod-
els with the optimal velocity function are a favorable one
of the microscopic traffic models and have been studied
in great detail by the use of the numerical and analyti-
cal methods [7–20]. In these models, the optimal velocity
function is the same for all the vehicles and the equations
of motion of all the vehicles are given by the same differen-
tial equations. Generally, a vehicle has the characteristic
different from the other. The degree of the acceleration
or deceleration of a vehicle is different from each other.
It will be excepted that the difference among the charac-
teristics of vehicles has an important effect on the traffic
flow. Thus, it will be necessary to include the different
characteristics of vehicles into the car following models.

In modern traffic theory, it is well known that traf-
fic jams occur in the high density region and propagate
as kink-antikink density waves [6–9]. In the past, traffic
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jams have been treated as the soliton density wave [4,5]
or triangular shock wave [26]. The nonlinear waves depend
strongly on the traffic models [26]. Until now, it has been
unclear as to whether or not the triangular shock wave
occurs in modern traffic models. The car-following models
with optimal velocity function are favorable among micro-
scopic traffic models and have been studied in great detail
using of the numerical and analytical methods [20–25]. Re-
cently, Nagatani has studied the effect of the velocity fluc-
tuations of the leader vehicle [22], the velocity-dependent
sensitivity [18], the next-nearest-neighbor interaction [23]
and the effects of the variation of the delay time ∆τ to
reach the optimal velocity in the periodic boundaries using
numerical simulations [24]. In the latter case and depend-
ing on the value of ∆τ , Nagatani showed the existence
of two regime namely, kink jam and uniform velocity free
traffic.

Our main contribution in this paper is to study the
effects of open boundaries (injecting and extracting rates)
on the traffic flow behavior, average velocity and phase
diagram of such a model [24] using numerical simula-
tions. However, it is found that phase diagrams in the
(α, β) plane exhibits three different phases namely, unsta-
ble, metastable, stable. The transition line between sta-
ble phase and unstable one is curved and it is of first
order type. While the transitions between stable (unsta-
ble) phase and metastable phase are of second order one.
Furthermore the region of the metastable phase, in the
(α, β) plane shrinks with the increase of the variation of
the delay time and disappears completely above a critical
value ∆τc, which is independent of the value of ∆τ . Such
results are not obtained in the periodic boundaries [24].

The paper is organized as follows: the model is defined
in Section 2. Results and discussions are presented in Sec-
tion 3. While Section 4 is reserved for conclusions.

2 Model

We consider a one-dimensional road of length L with open
boundary conditions the particles are injected with a given
rate probability α at one end of the road and are extracted
with a given rate probability β at the opposite end. We
present the car-following models with the optimal velocity
function [5–12]. Newell [4] and Whitham [5] have analyzed
the traffic model described by the following equation of
motion of car j:

dxj(t + τ)
dt

= V (∆xj(t)), (1)

where xj(t) is the position of the vehicle j at time t,
∆xj(t)= xj+1(t)−xj(t) is the headway of vehicle j at time
t, and τ is the delay time (how is allows for the time lag
that it takes the car velocity to reach the optimal velocity
V (∆xj(t)) when the traffic flow is varying. V (∆xj(t)) is
the optimal velocity of vehicle j and is given by

V (∆xj(t)) =
vmax

2
{tanh(∆xj(t) − hc) + tanh(hc)}, (2)

where hc is the safety distance and vmax is the maximal
velocity of vehicle j when other vehicles do not exist. In
the original car following models, the optimal velocity is
the same for all the vehicles. Thus, the optimal velocity
function of each vehicle is different from each other. Gen-
erally, it is necessary that the optimal velocity function
has an upper bound (maximal velocity). Also, it is impor-
tant that the optimal velocity function has the turning
point. Otherwise, one cannot have the rebus density wave
representing the traffic jams.

The idea of the above car following model is that a
driver adjusts the vehicle velocity dxj(t)

dt according to the
observed headway ∆xj(t). The delay time τ allows for the
time lag that it takes the velocity dxj(t)

dt of each vehicle to
reach the optimal velocity V (∆xj(t)) of each vehicle when
the traffic flow is varying.

By taylor-expanding, equation (1), one obtains the dif-
ferential equation model [6]

d2xj(t)
dt2

= a

[
V (∆xj(t)) − dxj(t)

dt

]
, (3)

where a = 1/τ is the sensitivity of a driver.
Furthermore, by transforming the time derivative to

the difference in equation (1), one can obtain the difference
equation model

xj(t + 2τ) = xj(t + τ) + τV (∆xj(t)). (4)

We consider such a case that the dimensionless delay
time of vehicle j is uncorrected with other vehicles and
is given by

τj = 〈τ〉 + ∆τ [2rnd(j) − 1.0], (5)

where rnd(j) is the random number between zero and
unity, 〈τ〉 is the average value of the dimensionless de-
lay time, and ∆τ is the strength of the variation of the
dimensionless delay time.

3 Results and discussions

In our simulation the rule described above is updated in
parallel dynamics, i.e. during one updating procedure the
new particle positions do not influence the rest and only
previous positions have to be taken into account. The ini-
tial conditions are chosen as follows: ∆xj(0) = ∆x0 for
all j, ∆xj(1) = ∆x0 for j �= 50, 51, ∆xj(1) = ∆x0 − 0.1
for j = 50 and ∆xj(1) = ∆x0 + 0.1 for j = 51, where the
initial number of particles is N = 100 and hc = 5. Cars
are numbered as 1, 2, 3, ....N , the injecting and extracting
rate can be do as follows:

if the position of the first particle in the system is
superior to the safety distance hc and the rate injecting
probability is superior to an random number between zero
and unity, to this moment a new particle is added to the
system and it is going to occupy the first position in the
chain. In the same time step, if the position of the leading
car in the system is superior to the difference between the
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size of the chain and the safety distance hc (L − hc) and
the rate extracting probability is superior then an random
number between zero and unity, however the leading car
removed the system.

In order to study the effects of the open boundaries,
in the absence of the variation of the dimensionless de-
lay time ∆τ , on the traffic flow behavior, Figures 1a–c
show the velocity profiles obtained at t = 30 000, τ = 0.5,
for fixed values of α and β. However, Figure 1a shows the
kink density waves representing the traffic jams in the con-
ventional car following model. It is clear that the vehicle
velocities oscillate discontinuously between two different
values, high and low velocities. Hence, the higher value
correspond to the optimal velocity. The traffic flow ap-
pears to be irregular in the velocity profile and the density
waves propagate upstream. However, there exist a criti-
cal value βc1 above which the kink jams become weaker,
and the number of the peaks decrease and then the traf-
fic flow becomes to be regular (Fig. 1b), this situation is
called metastable phase. Hence, in this case, we have a
congested traffic with a single and/or a few density waves
which propagates backward. When the value of β becomes
larger than a critical value βc2 (βc2>βc1), the kink jams
disappear and the velocity profile becomes uniform over
all vehicles in the road, and then the traffic flow exhibits
the uniform-velocity phase (Fig. 1c). Figures 1d–e shows
the combination effects of both open boundaries and finite
value of ∆τ = 0.25 on the velocity profiles at t = 30 000,
τ = 0.75. and for a fixed value of α and β. However,
Figure 1d shows the oscillatory congested traffic with the
kink-antikink form [22]. In the same way when increas-
ing the value of β, the kink-antikink form disappears and
we show the oscillatory free traffic where vehicles oscillate
around the optimal velocity [24] (Fig. 1e). Even in absence
of dimensionless delay time, however, it is found that the
effects of open boundaries permits to produce the same
features in the traffic flow obtained by Nagatani [24] in
the periodic conditions and in presence of dimensionless
delay time.

In order to examine the behavior of the flow density
regime in the open boundaries, we study the space-time
evolution for various values of extracting rate probabil-
ity β. As a result, three types of traffic flow behavior are
distinguished: (1) a coexisting phase in which the kink-
antikink density wave appears (unstable state), (2) weaker
density wave (metastable state), and (3) a freely moving
phase (stable state). To illustrate these features, Fig-
ures 2a–c shows the typical traffic patterns that is rep-
resented the different behavior (unstable, metastable, sta-
ble) for the traffic behavior induced by a fixed value of
injecting and extracting rate probability α and β. The
pattern in Figure 2a exhibits the space-time evolution for
the coexisting phase (the alternative high velocity and low
velocity) after a sufficiently large time. It is clear that
the density wave appears as the traffic jam. Figure 2b
exhibits the space-time evolution for the uniformly con-
gested phase, where the density wave becomes weaker and
propagate backward. The pattern in Figure 2c exhibits the
space-time evolution for the freely moving phase where all

Fig. 1. Velocity profile obtained (a) β = 0.2, (b) β = 0.4,
(c) β = 1, and 〈τ 〉 = 0.5, ∆τ = 0.0 While (d) β = 0.2, (e)
β = 0.4 and 〈τ 〉 = 0.75, ∆τ = 0.5 at t = 30 000, hc = 5.0,
α = 1, and L = 500.
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Fig. 2. Space-time plot for 〈τ 〉 = 0.5, hc = 5.0, ∆τ = 0.0,
α = 1, and L = 500. (a) β = 0.2, (b) β = 0.4, (c) β = 1.

vehicles move with the same velocity. Each velocity profile
in the Figures 1a–c corresponds to patterns in Figures 2a–
c respectively.

In the case hc = 5.0 and τ = 0.5 and for several
values of ∆τ , phase diagram in the (α, β) plane shows
that the system exhibits three phases, unstable, metasat-
ble and stable phases (Fig. 3). It is clear that the tran-
sition from unstable to metastable and from metastable
to stable state occur under the effect of the probabilities
rates α and β. However, for a fixed value of α, there ex-
ist a critical value of the extraction rate βc1 above which
the wave density disappears and the metastable state ap-
pears and a critical value βc2 (βc1<βc2) above which the
metastable state disappears while the stable state appears.
βc1 and βc2 depend on the values of α and the variation

Fig. 3. Phase diagram in the (α, β) plane for τ = 0.5. Dashed
lines correspond to second order transition, while solid lines
correspond to first order transition. The number accompanying
each curve denotes the value of ∆τ .

Fig. 4. The variation of the average density versus the inject-
ing rate probability α for 〈τ 〉 = 0.5, hc = 5.0, ∆τ = 0.0, and
L = 500. The number accompanying each curve denotes the
value of β.

of the delay time ∆τ . Indeed βc1 and βc2 increase when
increasing α and/or decreasing ∆τ . Furthermore the re-
gion of the metastable phase, in the (α,β) plane shrinks
with the increase of the variation of the delay time and
disappears above a critical value ∆τc, which is indepen-
dent of the value of the delay time τ . Such results are
not obtained in the case of periodic boundaries [24]. The
behavior of density as a function of the injecting (or ex-
tracting) rate for a fixed value of extracting (or injecting)
rate (Fig. 4) shows that the transitions between unsta-
ble state (stable state (for β>βc) and the metastable one
are of second order type. While the transitions between
metastable (unstable) and stable state (for β<βc) are of
first order type. Indeed, at the first order transition, the
density undergoes a discontinuity, while the density be-
haves continuously at the second order transition [11,27].
The critical value βc depends on the value of the variation
of the delay time ∆τ . Indeed βc decreases when increas-
ing ∆τ . Indeed for ∆τ = 0, βc = 0.5; for ∆τ = 0.15,
βc = 0.25, while for ∆τ = 0.3, βc = 0.15. In the latter
case, the matastable phase disappears and then, there is
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Fig. 5. The variation of the global mean velocity versus the
injecting rate probability α for several values of β, with 〈τ 〉 =
0.5, hc = 5.0, ∆τ = 0.0, and L = 500.

only the transition between unstable and stable phases.
The corresponding velocity behavior as a function of the
injecting rates is given in (Fig. 5). It is found that the
average velocity undergoes a jump from high to low val-
ues at the first order transition such jumps is obtained, in
our previous work, in the case of two dimensional cellular
automaton traffic flow models [27].

4 Conclusion

Using numerical simulation method, we have studied the
effects of open boundaries conditions on the dynamical
behavior of the optimal velocity traffic flow models with
a delay time τ . We have shown in the absence of the
variation of the delay time ∆τ , that the transition from
unstable to metastable and from metastable to stable
state occur under the effect of the probabilities rates α
and β. However, for a fixed value of α, there exist a critical
value of the extracting rate βc1 above which the wave den-
sity phase disappears and the metastable state appears
and a critical value βc2 above which the metastable state
disappears while the stable state appears. βc1 and βc2

depend on the values of α and the variation of the delay
time ∆τ . Indeed βc1 and βc2 increase when increasing
α and/or decreasing ∆τ . The flow of vehicles is calcu-
lated as a function of α, β and ∆τ for a fixed value of τ .

We have shown that the(α, β) phase diagram exhibits
three different phases namely, unstable, metastable and
stable for ∆τ>∆τc, while for ∆τ<∆τc only stable and
unstable phases appears.
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